Technical Whitepaper

Encrypted Al Inference with Fully Homomorphic Encryption

Lt e o o 1o 22w o sevs o7+ 357094 am v o0 303985 st e e 450 0 S0 450 e o e e R 2
B L B 908 5575150 208 35 Fo ot foa e e St e siocsadotoatasbfarkobefesbesosbevtsdostassodostodeatodsadoste oatadiofert 3
B N I B e G N O TV C W 5. 5.0, 55D de bbbl bt e o frngo o oo beap oo ednsiosirdneto o oge oo ognspes S
B e el e e T L TR S L o S o L T L s L e e s e e s e 8
S bl el Sy 0 e e St 1
SR EXECRSIBILILY HOfCUSTOM HOFAWAIE: .. 5.5 o fie e fosiefiesindosiassotosiadosfesiodosiacsaissinsesiocsadseiebadosdessniost 14
T g R e e e R AR R R -~ S %
e AR S S S s s s s st n L LI LI L L LI L R = Ny, 18
el SR RS v FaTe (=] Mo, B e 22
10.:Beveloper EXPerENCE. ..o B i it e SIS B B 5 5 ¢ 24

lN@GonclusSion ® s s = e ac s« o M- oo o e o s e e] S 28

1. Introduction

Artificial Intelligence is becoming a critical enabler across industries such as
healthcare, finance, and government. Yet, adoption is increasingly constrained by
data privacy, compliance requirements, and trust. Enterprises often cannot
leverage their most valuable datasets, such as patient records, financial
transactions, or biometric identifiers, because sharing this data with third-party
Al providers creates regulatory and reputational risk.

Fully Homomorphic Encryption (FHE) offers a breakthrough: it allows
computation directly on encrypted data. With FHE, sensitive inputs never need to
be decrypted by the service provider. A model can run in the cloud, yet the server
never sees the raw data, and only the data owner can decrypt the result. In
principle, FHE solves the privacy problem at its root.

The challenge is that FHE, while mathematically powerful, has not been practical
in deployment. A naive implementation is orders of magnitude slower than
plaintext computation, making even simple models prohibitively expensive.
Existing libraries were designed as research tools: they expose low-level
cryptographic primitives but do not integrate with modern ML frameworks or
production pipelines. And although specialized hardware for FHE is emerging,
there has been no software layer that bridges cryptograophy with accelerators,
leaving a gap between theoretical capability and usable performance.

Lattica exists to close this gap. Our expertise lies in re-engineering FHE
algorithms so they run efficiently on accelerators such as GPUs, and in the future,
custom chips. We restructure core FHE primitives such as polynomial
multiplication in the CRT basis, modular arithmetic and ciphertext slot rotations,
into forms that can fully exploit parallel hardware. We implement these at the
CUDA and Torch (C++) level, with PyTorch bindings layered on top to give
developers a familiar API.

The result is a platform where ML engineers deploy models for encrypted
inference without cryptographic expertise, while hardware vendors integrate their
accelerators without building a full ecosystem. Our work makes FHE practical,
performant, and production-ready.

This white paper explains the technology behind Lattica: how we implement FHE
using tensor abstractions (via Torch), how we accelerate it on GPUs and extend to
custom hardware, and how we provide a secure, developer-friendly platform for
encrypted inference.

2. Background

What is FHE?

Fully Homomorphic Encryption (FHE) is a cryptographic technique that allows
data to be processed while it remains encrypted. A data owner can encrypt
sensitive information and send it to a compute provider (for example, a cloud
service running an Al model). The compute provider performs the requested
computation directly on the encrypted datao, without ever decrypting it. When the
result is returned, only the data owner, who holds the secret key, can decrypt it to
reveal the correct output.

Mathematically, if Enc(m) denotes the encryption of message m, then for any
function f:

Dec(f(Enc(m))) = f(m)
where f is the homomorphic equivalent of f.

This property enables powerful new applications: secure outsourcing of
computation, federated analytics, and Al inference without exposing sensitive
inputs.

Why Hasn't FHE Been Adopted Widely?

The promise of FHE has been clear since the first schemes were introduced, but
adoption has lagged due to three hurdles:

1. Performance overhead: Naive FHE inference can be millions of times slower
than plaintext execution. Historically, running even a simple logistic
regression under FHE took hours.

2. Usability: Libraries such as SEAL, HELlib, OpenFHE, and Lattigo were
designed as research tools. They expose low-level cryptographic primitives,
not developer-friendly APIs for ML engineers. They typically operate as
monolithic libraries that tightly couple client and server roles, and do not
fit naturally into production ML pipelines.

3. Lack of hardware integration: FHE is extremely compute-bound, yet most
implementations are CPU-only and not designed to leverage accelerators.
Specialized FHE hardware is emerging, but without an abstraction layer,
integration is difficult and fragmented.

U\ LatticaAl

Full-stack FHE platform,
GPU-ready,
chip-compatible

General-purpose
acceleration chips gain
momentum (GPUs)

Custom FHE
chip efforts
initiated
Early FHE libraries
Theoretical (HELib, SEAL) g
feasibility (Gentry) = oorriers
Academic m—otionS
open question ComP L L odof
1978 2009 2013 2020 2021 2023

Evolution of Fully Homomorphic Encryption

Alternatives and Their Limits

Other privacy-preserving technologies have gained adoption but fall short for

encrypted inference:

e Differential Privacy: Effective for statistical analysis and training, but adds
noise that makes it unsuitable for per-user predictions.

Trusted Execution Environments (TEEs): Provide near-native performance
but require full trust in chip vendors and cloud providers, and have known
vulnerabilities. In addition, TEEs tightly couple computation to specific
hardware, making it difficult to switch between accelerators, for example, to
reduce cost by using cheaper hardware or to scale performance by
adopting stronger hardware.

Secure Multi-Party Computation (SMPC): Introduces high latency for
inference due to interactive protocols.

FHE remains the only method that provides strong cryptographic guarantees for

per-query inference without requiring trust in infrastructure providers. The

challenge is making it fast and usable.

3. Lattica Architecture Overview

Lattica’s platform is designed from the ground up to make encrypted inference

practical. The architecture has five layers:

Client-Server Split

We separate roles cleanly between the client and the server:

Client: Responsible for key management, input encryption, and result
decryption. This can run in lightweight environments such as a mobile app,
browser, or enterprise client system. Keys never leave the client
environment.

Server (Lattica Cloud or on-prem deployment). Executes the heavy
homomorphic computations on encrypted data. The server only ever
processes ciphertexts and never sees raw data or keys.

This split minimizes trust assumptions: the client retains sole control over keys,
while the server only processes ciphertexts.

Core Expertise: Cryptography Re-Engineered for Acceleration

The true engine of Lattica's technology is our re-implementation of FHE primitives
to exploit modern accelerators. Standard FHE libraries are CPU-bound and
monolithic. We redesign the algorithms themselves, e.g. polynomial arithmetic,
modular arithmetic, ciphertext rotations and key-switching, so they can be
executed in parallel and mapped efficiently onto GPUs today and specialized
hardware tomorrow.

Examples of this approach include:

e Optimized NTT (Number Theoretic Transform) kernels using CUDA.
e Batched modular arithmetic routines aligned with GPU execution patterns.

e Scheduling strategies that minimize memory transfers between CPU and
GPU.

This cross-disciplinary expertise, spanning cryptography, GPU kernel
programming, and ML systems, is our core technical moat.

HEAL: Abstraction as an Enabler

To make our optimized primitives portable across accelerators, we created the
Homomorphic Encryption Abstraction Layer (HEAL).

HEAL defines a lean interface of tensor-level functions that allow hardware
vendors to integrate their accelerators into the Lattica ecosystem without
re-implementing the entire software stack.

To support integration, we provide a suite of tools alongside HEAL:

e A standalone runtime to bring up and test implementations.

e Unit tests to validate correctness against reference implementations.

e Example computation transcripts droawn from real encrypted inference

workloads.

This ensures hardware vendors can validate and optimize their designs quickly,
while benefiting from immediate compatibility with the broader Lattica plotform.

Layered System: CUDA — Torch — PyTorch

The Lattica platform is built in layers that balance low-level efficiency with
high-level usability:

e CUDA kernels: Hand-optimized routines for NTTs, modular arithmetic, and
other custom FHE transforms.

e Torch C++ backend: Manages device memory, orchestrates tensor
operations, and bridges CUDA kernels with higher-level APIs.

e PyTorch bindings: Expose the system through familiar ML abstractions,
allowing developers to integrate encrypted inference with minimal changes
to their existing workflows.

For the ML developer, working with Lattica feels like working with PyTorch. Under
the hood, however, computations are executed through deeply optimized
CUDA/Torch implementations tailored for FHE.

Model Adaptation Layer for ML Inference

Beyond raw homomorphic operations, Lattica includes a model adaptation layer
specifically designed for ML inference.

When an Al provider uploads a trained model, our platform performs
pre-processing on the architecture and weights to adapt them for encrypted
execution. This may include:

e Transforming nonlinear layers into FHE-compatible approximations.

e Re-structuring computation graphs to reduce ciphertext depth and
rotation overhead.

e Pre-computing constants and packing weights to minimize runtime cost.

All tronsformations that can be applied ahead of time are performed in this
adaptation stage. As a result, the online phase of encrypted inference is reduced
to a streamlined sequence of tensor operations, minimizing latency when queries
arrive in real time.

4. Tensor Programming Model

Why Tensors Matter

Modern accelerators like GPUs and TPUs are designed around tensors, which are
multi-dimensional arrays that can be processed in parallel. A key advantage of
tensors is that they allow developers to instruct the hardware to operate over
different subsets of dimensions. For example, summing along one axis,
multiplying elementwise across another, or collapsing multiple axes into a single
one.

Another powerful property of tensors is that they separate the logical data
structure from its physical memory loyout. Through the use of strides, tensors
define how to step through memory along each dimension, enabling different
shapes or views of the some data without copying. This makes them especially
well suited for accelerators, where memory movement is often more expensive
than arithmetic.

For acceleration hardware, tensors provide three critical advantages:

e Parallelism: Each dimension can be mapped onto thousands of compute
threads.
e Locality: Stride-based views allow algorithms to reuse data efficiently

without reshaping or copying.

e Decoupling: Tensors separate the algorithmic structure of computation
from the details of how it is executed on hardware, allowing the same
operation to run efficiently across different accelerators.

One of Lattica’s core innovations is to reformulate both ciphertexts and
algorithms in tensor form. This makes encrypted computation align naturally with
accelerator hardware, without requiring algorithm redesign for each backend.

Tensor Representation of Ciphertexts

In FHE schemes such as CKKS and BGV, ciphertexts are pairs of polynomials in
the ring

with coefficients represented modulo a product of primes 4~ H% (the modulus
chain). Using the Chinese Remainder Theorem (CRT), each coefficient is
represented across these primes simultaneously.

This algebraic structure induces a natural multi-dimensional tensor layout.
Typical dimensions include:

e Polynomial degree: indexes the N coefficients of the polynomial.
e Modulus chain: indexes primes in the CRT representation.
e Ciphertext components: two or three components per ciphertext.

e Batch: multiple ciphertexts processed together.

The representation is flexible: additional dimensions can be introduced as
needed. For example, gadget decomposition (used in key switching) introduces a
dimension for the decomposition basis. Importantly, this some representation
also extends naturally to plaintexts: vectors, images, and multi-dimensional
feature maps can be packed into tensor slots, so the model’'s native data layout
aligns with the encrypted one.

https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2011/277

Exploiting the Tensor Programming Model in Lattica

We don't just represent ciphertexts as tensors, we use this representation as the

programming model for building efficient encrypted inference. This has three key

consequences:

Algorithmic expressiveness: Complex cryptographic concepts such as
homomorphic matrix multiplication, polynomial approximations and
bootstrapping can be described naturally in tensor-based programming.
Once written this way, they map seamlessly to accelerators, without
requiring cryptographers to design hardware-specific variants.

Low-level optimization: At the same time, the tensor representation exposes
clean hooks for hand-tuned kernels. We can implement specialized CUDA
routines for NTTs, modular arithmetic, or bit decomposition while keeping
the higher-level algorithm unchanged. This separation means we can
optimize close to the hardware without entangling algorithm design.

Hardware agnosticism: Because tensors capture the parallelism potential
of FHE algorithms, our implementation is not tied to any one accelerator.
Improvements in GPUs, TPUs, or future FHE-specific chips can be exploited
automatically, since the tensor-based language allows us to map
operations to whatever parallel resources the hardware provides.

In short, the tensor representation lets us bridge three worlds at once:

cryptographic algorithms, accelerator-level optimizations, and hardware

portability.

10

S. GPU Acceleration

Why GPUs for FHE

Fully Homomorphic Encryption is dominated by arithmetic-heavy primitives such
as polynomial addition, multiplication, modular reduction, and ciphertext
rotations. Once ciphertexts are expressed as tensors, the natural next step is to
run them on hardware designed for tensor workloads. GPUs are a strong first
platform because they combine:

e Massive parallelism: Tens of thousands of lightweight threads allow each
coefficient x modulus pair to be updated simultaneously.

e Large RAM capacity: FHE ciphertexts are big objects (polynomials with tens
of thousands of coefficients, represented across dozens of primes). GPUs
provide relatively large on-device memory, making them suitable for storing
these expanded ciphertexts and keeping them resident throughout
inference.

e Mature ecosystem: CUDA, Torch (C++), and PyTorch offer stable toolchains
for kernel development, runtime orchestration, and user-facing APIs.

This makes GPUs the first practical accelerator for FHE workloads: widely
available, cost-efficient, and capable of handling ciphertexts at scale.

Elementwise Modular Arithmetic

In the CRT representation, nearly all FHE operations reduce to elementwise
modular arithmetic over the polynomial x modulus chain tensor. The dominant
computation is repeatedly applying

or

for thousands of coefficients across multiple primes.

11

The tensor representation allows us to focus optimization effort precisely on this
bottleneck. For example:

e We implement custom CUDA kernels with Barrett reduction, avoiding slow

integer division in modular multiplication.

e Unlike PyTorch or Tensorflow, which are optimized for floating-point math,
our kernels are designed for modular integer arithmetic. If implemented
naively in Torch, computinga * b % g with 32-bit operands forces
promotion to 64-bit tensors for intermediate results. This doubles memory
usage, meaning only ~50% of GPU RAM can be used to store ciphertexts.

By contrast, our kernels allocate intermediate high-precision registers
inside the GPU thread, so only the final reduced results are written back.
This allows us to use up to ~85% of GPU memory for ciphertext storage,
draomatically improving capacity and throughput.

Optimized NTT Kernels

Polynomial multiplication in FHE is carried out using the Number Theoretic
Transform (NTT), which converts convolution in coefficient space into elementwise

multiplication in the NTT domain. For large ciphertext degrees (N = 2'2 - 2'9), this
is the single most expensive primitive in the pipeline.

Naive GPU implementations of NTT perform poorly because they:

e Require frequent global memory shuffles, moving coefficients back and
forth across the GPU.

e Introduce non-coalesced memory accesses, where threads read/write

scattered addresses.

e Allocate temporary buffers for each stage, increasing memory overhead
and reducing effective GPU RAM for ciphertexts.

12

https://en.wikipedia.org/wiki/Barrett_reduction

Our CUDA NTT kernels are designed to minimize these bottlenecks:

e Shared memory tiling: At each butterfly stage, coefficients are loaded into
on-chip shared memory, reducing global memory troffic by an order of
magnitude.

e Memory coalescing: Global memory access patterns are carefully aligned
so that consecutive threads access consecutive coefficients, maximizing
throughput.

¢ In-place transformations: Intermediate results are written back into the
same buffer, avoiding allocation of temporary arrays and preserving GPU
RAM for ciphertext storage.

With these optimizations, NTT execution scales efficiently even for very large

polynomials. For example, an N = 2'¢ transform that takes tens of milliseconds on
CPU can be executed in just a fraction of a millisecond on a single GPU.

Custom Kernels for FHE Primitives

While elementwise modular arithmetic and NTTs dominate the runtime, certain
cryptographic subroutines are uniquely challenging in FHE and require
specialized kernels. Chief among these is key switching, which enables ciphertexts
to be transformed after multiplications and rotations.

A central step in key switching is bit decomposition of coefficients, typically

across a gadget basis. Naive implementations first reconstruct coefficients in Zq
and then decompose them, which is both memory-heavy and inefficient on GPUs.

Our custom kernel performs bit decomposition directly in the CRT domain using
techniques borrowed from Garner's algorithm for mixed-radix reconstruction.

We also implemented custom modular gadget multiplication kernels, tuned to
GPU integer arithmetic pipelines, that consume the decomposed representation
efficiently.

13

Scheduling and Memory Optimizations

Fast kernels alone are not enough. FHE evaluation involves long sequences of
dependent operations, and poor orchestration can easily erase raw kernel
speedups. Lattica’s runtime applies several scheduling and memory strategies to
keep execution efficient end-to-end:

e Fused execution: Sequences of dependent operations (e.g., decompose —
multioly - accumulate) are collopsed into single kernel launches, reducing
launch overhead and eliminating unnecessary global memory writes.

e On-GPU residency: Ciphertexts remain in device memory for the entire
inference pipeline, avoiding host-device transfers that would otherwise
dominate latency.

e Memory-aware scheduling: Intermediate tensors are tracked through the
instruction dependency graph and freed immediately after their last use,
lowering GPU memory footprint and enabling larger batch execution.

e Overlap of compute and memory: Where possible, asynchronous data
movement is overlapped with computation, ensuring GPU pipelines remain
saturated.

6. Extensibility to Custom Hardware

Why Custom Hardware Matters for FHE

While GPUs provide the first practical acceleration path for FHE, they are not the
endgame. FHE workloads are extremely arithmetic-intensive and structured,
which makes them ideal candidates for domain-specific hardware. Several efforts
are already underway to design FHE-oriented ASICs and FPGA implementations,
targeting lower latency and higher throughput than general-purpose GPUs can
offer.

14

However, these hardware efforts face a cold-start problem: without a mature
software ecosystem and real workloads, hardware vendors cannot validate or
commercialize their chips effectively. At the some time, enterprises cannot adopt
FHE broadly if doing so requires waiting for specialized silicon.

Lattica solves this impasse by providing both: a production-grade FHE software
platform today, and a portable abstraction layer for hardware tomorrow.

Portable Algorithmic Foundations

The portability of Lattica's system comes from how we formalized FHE execution
as a lean set of tensor operations. Instead of exposing cryptographic primitives
directly, we defined an interface of roughly 20 core functions over tensors that

capture the entire space of operations needed for encrypted inference.

e These functions cover the essential homomorphic building blocks (modular
arithmetic, rotations, rescaling, key switching components), but are
expressed in a way that maps naturally to accelerators.

e By keeping the interface small and precise, we make it feasible for hardware
vendors to implement full support without years of cryptographic
engineering.

e Because ciphertexts are represented in our flexible tensor layout, with
dedicated dimensions for polynomial degree and modulus chain, these
operators can act directly on double-CRT dataq, enabling efficient
homomorphic operations and batching without backend-specific rewrites.

This design strikes a balance: rich enough to express encrypted inference
pipelines, lean enough to be portable across GPUs, TPUs, and custom FHE ASICs.

HEAL as the Hardware Integration Layer

To make this portability practical, we expose our system through the
Homomorphic Encryption Abstraction Layer (HEAL). HEAL provides the standard

15

https://healdocs.lattica.ai/interface-specifications

contract between FHE algorithms and acceleration backends. For custom
hardware vendors, HEAL means:

e They only need to implement a small set of primitive operators.

e They can integrate with Lattica’'s ecosystem without rebuilding client APIs,
developer tools, or orchestration logic.

e Their hardware immediately becomes usable for real encrypted inference

workloads.

1 L
Algorithms . = = =
Universal host_to_device 3 = =
Interface e ik = - =

for FHE — ~compute TTTTTT TTTTIT

Operations EL BT instructions LLLLLL LLLLLL
Core Building Blocks P 3 = =
device_to_host | TPu [E J|cPu|E

A\ LatticaAl LLLLLLI LLLLLL

This allows hardware companies to focus on raw performance at the silicon level
while relying on Lattica to provide the runtime, APIs, and ecosystem adoption. To
make integration practical, we provide a complete suite alongside the interface,
including:

e A standalone runtime, so vendors can test their implementation in

isolation.
e Unit tests that validate functional correctness.

e Example transcripts of computations, drawn from real encrypted inference

workloads, to guide optimization and debugging.

16

https://healdocs.lattica.ai/core-concepts-explained/runtime
https://github.com/Lattica-ai/heal/tree/main/tests
https://healdocs.lattica.ai/core-concepts-explained/transcript
https://github.com/Lattica-ai/heal

Co-Design Opportunities

While the HEAL interface defines the core set of required functions, we also
recognize that different hardware platforms have unique strengths. To enable
innovation, the interface allows vendors to define additional custom operations
that extend beyond the baseline.

For example, a chip might expose a fused polynomial-multiplication-and-rescale
primitive, or specialized key-switch implementation. These vendor-specific
extensions can be registered alongside the standard functions, giving hardware
partners the flexibility to differentiate without breaking compatibility.

This approach ensures a common foundation across all backends, while giving
each vendor room to highlight and exploit their hardware's unique advantages. In
this way, Lattica remains complementary to hardware vendors, not competitive
with them. We provide the execution layer that makes their innovations usable.

/7. Query Client

While heavy homomorphic computations run on the Lattica platform, the query
client handles all sensitive operations: key generation, encryption of inputs, and
decryption of results.

Lightweight and Portable

The client is designed to run in constrained environments such as mobile devices,

browsers, or enterprise endpoints:

e No custom HW required: Computation is optimized for CPUs, using

multi-threading to take advantage of available cores.

e WebAssembly support: The client can be compiled to WebAssembly,
enabling execution inside modern browsers with no installation overhead.

17

https://platformdocs.lattica.ai/architecture-overview/query-client
https://platformdocs.lattica.ai/architecture-overview/query-client

Open Source and Auditable

The query client is released as open source, allowing enterprises and regulators
to audit its security. This transparency reinforces the zero-trust model: the client
is the only component that ever handles plaintexts or secret keys, and its
correctness can be independently verified.

Tensor-Based Design

Just like the server runtime, the query client represents data as tensors, built on
top of Torch. This provides consistency across the stack: encryption, decryption,
and homomorphic computation all share the some data abstraction. It also
enables the client to apply analogous optimizations, such as thread-level
parallelism and stride-based memory views, to avoid unnecessary copies and
maximize efficiency on CPU-only environments.

8. Benchmarks & Results

Why Benchmarking Matters

For FHE to move from theory to production, performance must be demonstrated,
not assumed. Academic libraries have long proven correctness, but they are
orders of magnitude too slow for real-world Al workloads. Enterprises evaluating
encrypted inference need to see concrete, reproducible benchmarks that
compare:

18

https://github.com/Lattica-ai/lattica_fhe_core
https://github.com/Lattica-ai/lattica_fhe_core

e Latency: Can queries run in near real-time?

e Throughput: Can the system handle batch workloads at scale?

e Cost: Is the overhead low enough to be practical in the cloud?

Lattica has published head-to-head comparisons against academic baselines

and cloud services. These results show that encrypted inference can be made

both fast and cost-efficient, unlocking production use cases in healthcare,

finance, and security.

Image Classification (CIFAR-10 Dataset)

We benchmarked encrypted inference on a CNN model against a widely cited

baseline from the University of Deloware.

e Setup:

o

@)

o

€]

Dataset: CIFAR-10

Client: Python query client on a Linux PC, Intel i9-13900H.
Server: AWS pS.xlarge instance (NVIDIA H100 GPU).
Security: 228-bit parameters.

e Results:

@)

o

University of Deloware baseline: 2,533 seconds per query (=39
minutes), $5-10 cost.
Lattica: 31.5 seconds per query, $0.001 cost.

This represents a ~80x reduction in latency and a 10,000x reduction in cost per

query, making encrypted image classification usable for interactive applications.

19

https://eprint.iacr.org/2024/1099.pdf
https://eprint.iacr.org/2024/1099.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
https://demo.lattica.ai/models/sketchToNumber

Logistic Regression (Disease Prediction Dataset)

We also compared logistic regression inference, a widely used workload in
healthcare and risk modeling, against a benchmark from the AWS SageMaker

teaom.

e Setup:

o Lottica dataset: disease prediction dataset (131 features, 41 classes).

o AWS SageMaker dataset: |ris dataset (4 features, 3 classes).
o Client: Python query client on a Linux PC, Intel i9-13900H.
o Server: AWS pS.xlarge instance (NVIDIA H100 GPU).

o Security: 228-bit parameters.

e Results:
o AWS SageMaker baseline: 2,150 seconds for 5,000 queries (=36
minutes).

o Lattica: 6.08 seconds for 5,000 queries.

This demonstrates not only low per-query latency but also the ability to run large
batch workloads efficiently.

Nonlinear Scaling with Batching

A key advantage of Lattica's implementation is its ability to parallelize encrypted
inference across batches of queries. Unlike the SageMaker benchmark, whose
inference duration grows linearly with batch size due to limited parallelism,
Lattica achieves nonlinear scaling by exploiting GPU parallelism and batch-aware
homomorphic execution.

As shown in the figures below, increasing the query batch size from 1to 5,000 leads
to only a modest increase in total execution time. For example:

https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://www.kaggle.com/datasets/kaushil268/disease-prediction-using-machine-learning
https://archive.ics.uci.edu/dataset/53/iris
https://demo.lattica.ai/models/healthPrediction

e A single query completes in under one second.
e A batch of 1,000 queries completes in ~2 seconds.

e Even 5,000 queries complete in just over 6 seconds.

This sublinear growth in runtime demonstrates that Lattica can serve both
interactive, low-latency queries and large-scale batch jobs efficiently.

Lattica E2E Inference Duration

E2E (seconds)
£

1 10 100 1000 2000 3000 4000 5000

Query Batch Size

SageMaker FHE Inference Duration

FHE Time to Predict vs. Example Count

@ /

Time (s)

m / .
10 /

)
e

o 20 40 B0 B0 100
Number of Examples

https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/

Practical Takeaway

These benchmarks demonstrate that encrypted inference is both technically
feasible and economically viable today. By combining FHE with GPU acceleration
and batching, we achieve costs comparable to conventional cloud inference, even
before specialized hardware is introduced.

e Queries can now be served in tens of seconds, not hours.
e Batch workloads complete in seconds, not half an hour.

e Costs are low enough to make real-world deployment practical.

For enterprises, this proves that privacy-preserving Al has moved beyond theory
into deployment. For hardware vendors, it confirms that real workloads already
exist today and can be accelerated even further tomorrow.

9. Security & Trust Model

Zero-Trust Architecture

Lattica’s platform is designed around a zero-trust principle: the plotform itself
never sees plaintext data or decryption keys.

e Client: Responsible for generating and holding cryptographic keys,
encrypting inputs, and decrypting results. Keys never leave the client

environment.

e Lattica Platform: Executes encrypted inference entirely on ciphertexts. The
platform processes only encrypted data and evaluation keys, which are
sufficient for computation but do not allow decryption.

This separation ensures that even though computations are executed on the
Lattica platform, sensitive data remains cryptographically protected at all times.

22

Key Management
Key management is performed fully on the client side:

e Secret keys are generated and stored locally by the end-user.

e Only evaluation keys, which are special-purpose keys required to enable
homomorphic operations, are uploaded to the Lattica platform.

e These evaluation keys cannot be used to recover plaintext, ensuring that
decryption capability always remains solely with the end-user.

This guarantees that the customer retains full cryptographic control, even while
leveraging the Lattica platform for execution.

Cryptographic Foundations

Lattica's platform is based on state-of-the-art lattice-based encryption schemes,
specifically:

e CKKS, which supports approximate arithmetic and is well-suited for deep
learning and statistical models.

e BGV, which supports exact modular arithmetic and is useful for workloads
requiring discrete, precise computation.

Both schemes are widely studied in the cryptograophy community and are
regarded as the most practical FHE schemes for real-world deployment.

Threat Model

We explicitly design against the following adversarial threats:

e Untrusted platform operators: Even though inference runs on the Lattica
platform, ciphertexts cannot be decrypted without client-held keys.

23

e Hardware-level vulnerabilities: Lattica’'s model does not rely on trusted
execution environments (TEEs) or other hardware-based secrecy, and is
therefore robust against side-channel or firmware-level exploits.

e Malicious insiders: No Lattica operator or administrator has access to
decryption keys or plaintexts.

We assume that client endpoints remain secure and uncompromised; key leakage
at the client would undermine the security guarantees of any FHE system.

10. Developer Experience

Familiar ML Abstractions

One of the major barriers to adopting FHE has been that existing libraries
expose cryptographic primitives rather than developer-friendly APls. Most ML
engineers are not cryptographers; they work with tensors, models, and inference
pipelines.

Lattica bridges this gap by exposing FHE through abstractions that mirror
familiar ML workflows. Developers continue to work with models in a style similar
to PyTorch, while the complexity of homomorphic execution remains hidden.

This lowers the barrier to adoption dromatically: teams can build encrypted
inference pipelines without retraining their engineers in cryptography.

APl and SDK

Lattica provides an API-first experience:

e Model Deployment: Al providers can upload trained models through the
Lattica console or SDK, where they are adapted for encrypted inference.

24

e Encrypted Inference: End-users (or enterprise clients) can query these

models with encrypted inputs, receiving encrypted outputs.

SDKs are available in Python and TypeScript, making it easy to integrate into
research prototypes and production systems alike.

End User

\ @

Encrypted Query

Deploy model Encrypted Response
Cloud

Al

Provider
Monoge resources

Console and Management Tools
The Lattica Console provides operational visibility and governance:

e Model lifecycle: Al providers can upload, manage, and monitor models.

e Access control: Usage can be restricted through policies and tracked for
auditing.

e Performance metrics: Query latency, throughput, and cost are visible in
real time.

e Compute management: Enterprises can allocate, scale, and monitor

compute resources, ensuring optimal performance and cost efficiency.

25

This ensures that encrypted inference can be deployed and operated with the

same rigor as standard cloud ML services.

LA LatticaAl Models Management

Credits Summary

= 81431

1Workers Connected Running for: OhTim 55 Add Worker v

Example Workflows

Al Provider (Model Owner)

1.

21
3.

Train a model in their preferred ML fromework.

Upload the model to the Lattica platform via console or SDK.

Lattica adapts the model into an encrypted inference flow, using
CUDA/Torch-optimized FHE kernels.

The provider can manage usage and monitor performance through the
console.

Enterprise Client (Query User)

1.

4.

Encrypts input data locally using the Lattica SDK (e.g., o medical scan,
financial record).

Sends the encrypted input to the Lattica platform.

The platform executes the encrypted inference and returns an encrypted
result.

The client decrypts the result locally to obtain the plaintext prediction.

In both cases, plaintext data and secret keys never leave the client environment,

ensuring end-to-end privacy.

26

”|[|I
”|[|I

) rf"\
— [— &}

MRI scan Encrypt Decrypt Seeresult
& Al
Encrypt data on Cloud compute directly on Decrypt result on
edge device encrypted data edge device
b A
,J_ —[_

Benefits for Developers
This developer experience offers:

e Minimal friction: Model owners and data owners both integrate with simple
APIs.

e Operational control: Providers manage models, clients retain key
ownership.

e Security by default: Neither side needs to handle cryptographic details; the

platform enforces them automatically.

By separating roles but unifying workflows under familiar ML abstractions, Lattica
makes encrypted inference practical for both Al providers and data owners.|

1. Conclusion

Fully Homomorphic Encryption has long promised a future where sensitive data
can be processed without ever being exposed. Until now, that promise has been
limited by prohibitive performance costs, lack of usable developer tools, and no
clear path to hardware integration.

Lattica changes this by:

e Re-engineering FHE primitives for accelerators, with CUDA/Torch
implementations that achieve orders-of-magnitude performance
improvements.

e Providing a zero-trust platform where sensitive data never leaves the
encrypted domain.

e Exposing encrypted inference through familiar ML abstractions, enabling

adoption by developers without cryptographic expertise.

e Delivering a portable interface (HEAL) that allows new hardware vendors to

join the ecosystem quickly and confidently.

Encrypted inference is no longer theoretical, it is deployable, performant, and
economically viable. By bridging the gap between cryptogrophy and acceleration,
Lattica is making FHE practical for the first time, and building the foundation for
a world where organizations can apply Al to their most valuable data without ever
exposing it.

www.lattica.ai

28

https://www.lattica.ai

	
	Technical Whitepaper
	1. Introduction
	2. Background
	What is FHE?
	Why Hasn’t FHE Been Adopted Widely?
	Alternatives and Their Limits

	3. Lattica Architecture Overview
	Client–Server Split
	Core Expertise: Cryptography Re-Engineered for Acceleration
	HEAL: Abstraction as an Enabler
	Layered System: CUDA → Torch → PyTorch
	Model Adaptation Layer for ML Inference

	4. Tensor Programming Model
	Why Tensors Matter
	Tensor Representation of Ciphertexts
	Exploiting the Tensor Programming Model in Lattica

	5. GPU Acceleration
	Why GPUs for FHE
	Elementwise Modular Arithmetic
	Optimized NTT Kernels
	Custom Kernels for FHE Primitives
	Scheduling and Memory Optimizations

	6. Extensibility to Custom Hardware
	Why Custom Hardware Matters for FHE
	Portable Algorithmic Foundations
	HEAL as the Hardware Integration Layer
	
	Co-Design Opportunities

	7. Query Client
	​

	8. Benchmarks & Results
	Why Benchmarking Matters
	Image Classification (CIFAR-10 Dataset)
	Nonlinear Scaling with Batching
	A key advantage of Lattica’s implementation is its ability to parallelize encrypted inference across batches of queries. Unlike the SageMaker benchmark, whose inference duration grows linearly with batch size due to limited parallelism, Lattica achieves nonlinear scaling by exploiting GPU parallelism and batch-aware homomorphic execution.
	As shown in the figures below, increasing the query batch size from 1 to 5,000 leads to only a modest increase in total execution time. For example:
	●​A single query completes in under one second.
	●​A batch of 1,000 queries completes in ~2 seconds.
	●​Even 5,000 queries complete in just over 6 seconds.
	This sublinear growth in runtime demonstrates that Lattica can serve both interactive, low-latency queries and large-scale batch jobs efficiently.​
	​
	
	Practical Takeaway

	​9. Security & Trust Model
	Zero-Trust Architecture
	Key Management
	Cryptographic Foundations

	10. Developer Experience
	Familiar ML Abstractions
	This lowers the barrier to adoption dramatically: teams can build encrypted inference pipelines without retraining their engineers in cryptography.
	API and SDK
	
	Console and Management Tools
	Example Workflows
	AI Provider (Model Owner)
	Enterprise Client (Query User)

	
	Benefits for Developers

	11. Conclusion

